四种事务模式
一、XA模式
XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
1.两阶段提交
XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。
正常情况:
异常情况:
一阶段:
- 事务协调者通知每个事物参与者执行本地事务
- 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁
二阶段:
- 事务协调者基于一阶段的报告来判断下一步操作
- 如果一阶段都成功,则通知所有事务参与者,提交事务
- 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务
2.Seata的XA模型
Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
RM一阶段的工作:
① 注册分支事务到TC
② 执行分支业务sql但不提交
③ 报告执行状态到TC
TC二阶段的工作:
TC检测各分支事务执行状态
a.如果都成功,通知所有RM提交事务
b.如果有失败,通知所有RM回滚事务
RM二阶段的工作:
- 接收TC指令,提交或回滚事务
3.优缺点
XA模式的优点是什么?
- 事务的强一致性,满足ACID原则。
- 常用数据库都支持,实现简单,并且没有代码侵入
XA模式的缺点是什么?
- 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
- 依赖关系型数据库实现事务
4.实现XA模式
Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:
1)修改application.yml文件(每个参与事务的微服务),开启XA模式:
seata:
data-source-proxy-mode: XA
2)给发起全局事务的入口方法添加@GlobalTransactional注解:
本例中是OrderServiceImpl中的create方法.
3)重启服务并测试
重启order-service,再次测试,发现无论怎样,三个微服务都能成功回滚。
二、AT模式
AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。
1.Seata的AT模型
基本流程图:
阶段一RM的工作:
- 注册分支事务
- 记录undo-log(数据快照)
- 执行业务sql并提交
- 报告事务状态
阶段二提交时RM的工作:
- 删除undo-log即可
阶段二回滚时RM的工作:
- 根据undo-log恢复数据到更新前
2.流程梳理
我们用一个真实的业务来梳理下AT模式的原理。
比如,现在又一个数据库表,记录用户余额:
id | money |
---|---|
1 | 100 |
其中一个分支业务要执行的SQL为:
update tb_account set money = money - 10 where id = 1
AT模式下,当前分支事务执行流程如下:
一阶段:
1)TM发起并注册全局事务到TC
2)TM调用分支事务
3)分支事务准备执行业务SQL
4)RM拦截业务SQL,根据where条件查询原始数据,形成快照。
{
"id": 1, "money": 100
}
5)RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90
6)RM报告本地事务状态给TC
二阶段:
1)TM通知TC事务结束
2)TC检查分支事务状态
a)如果都成功,则立即删除快照
b)如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}
),将快照恢复到数据库。此时数据库再次恢复为100
流程图:
3.AT与XA的区别
简述AT模式与XA模式最大的区别是什么?
- XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
- XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
- XA模式强一致;AT模式最终一致
4.脏写问题
在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
5.优缺点
AT模式的优点:
- 一阶段完成直接提交事务,释放数据库资源,性能比较好
- 利用全局锁实现读写隔离
- 没有代码侵入,框架自动完成回滚和提交
AT模式的缺点:
- 两阶段之间属于软状态,属于最终一致
- 框架的快照功能会影响性能,但比XA模式要好很多
6.实现AT模式
AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。
1)导入数据库表,记录全局锁
其中lock_table导入到TC服务关联的数据库(在使用docker-compose配置TC服务器时已经导入),undo_log表导入到微服务关联的数据库:
SEATA AT 模式需要 UNDO_LOG
表。你可以通过 github 获取到指定版本的undo log SQL 脚本.
-- for AT mode you must to init this sql for you business database. the seata server not need it.
CREATE TABLE IF NOT EXISTS `undo_log`
(
`branch_id` BIGINT NOT NULL COMMENT 'branch transaction id',
`xid` VARCHAR(128) NOT NULL COMMENT 'global transaction id',
`context` VARCHAR(128) NOT NULL COMMENT 'undo_log context,such as serialization',
`rollback_info` LONGBLOB NOT NULL COMMENT 'rollback info',
`log_status` INT(11) NOT NULL COMMENT '0:normal status,1:defense status',
`log_created` DATETIME(6) NOT NULL COMMENT 'create datetime',
`log_modified` DATETIME(6) NOT NULL COMMENT 'modify datetime',
UNIQUE KEY `ux_undo_log` (`xid`, `branch_id`)
) ENGINE = InnoDB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8mb4 COMMENT ='AT transaction mode undo table';
ALTER TABLE `undo_log` ADD INDEX `ix_log_created` (`log_created`);
2)修改application.yml文件,将事务模式修改为AT模式即可:
seata:
data-source-proxy-mode: AT # 默认就是AT
3)重启服务并测试
三、TCC模式
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
Try:资源的检测和预留;
Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
Cancel:预留资源释放,可以理解为try的反向操作。
1.流程分析
举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。
- 阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30
初识余额:
余额充足,可以冻结:
此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。
- 阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30
确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元
- 阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30
需要回滚,那么就要释放冻结金额,恢复可用金额:
2.Seata的TCC模型
Seata中的TCC模型依然延续之前的事务架构,如图:
3.优缺点
TCC模式的每个阶段是做什么的?
- Try:资源检查和预留
- Confirm:业务执行和提交
- Cancel:预留资源的释放
TCC的优点是什么?
- 一阶段完成直接提交事务,释放数据库资源,性能好
- 相比AT模型,无需生成快照,无需使用全局锁,性能最强
- 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库
TCC的缺点是什么?
- 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
- 软状态,事务是最终一致
- 需要考虑Confirm和Cancel的失败情况,做好幂等处理
4.事务悬挂和空回滚(注意)
1)空回滚
当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。
如图:
执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。
2)业务悬挂
对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂。
执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂
5.实现TCC模式
解决空回滚和业务悬挂问题,必须要记录当前事务状态,是在try、还是cancel?
1)思路分析
这里我们定义一张表:
CREATE TABLE `account_freeze_tbl` (
`xid` varchar(128) NOT NULL,
`user_id` varchar(255) DEFAULT NULL COMMENT '用户id',
`freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',
`state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;
其中:
- xid:是全局事务id
- freeze_money:用来记录用户冻结金额
- state:用来记录事务状态
那此时,我们的业务开怎么做呢?
- Try业务:
- 记录冻结金额和事务状态到account_freeze表
- 扣减account表可用金额
- Confirm业务
- 根据xid删除account_freeze表的冻结记录
- Cancel业务
- 修改account_freeze表,冻结金额为0,state为2
- 修改account表,恢复可用金额
- 如何判断是否空回滚?
- cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚
- 如何避免业务悬挂?
- try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务
接下来,我们改造account-service,利用TCC实现余额扣减功能。
2)声明TCC接口
TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,
我们在account-service项目中的cn.itcast.account.service
包中新建一个接口,声明TCC三个接口:
package cn.itcast.account.service;
import io.seata.rm.tcc.api.BusinessActionContext;
import io.seata.rm.tcc.api.BusinessActionContextParameter;
import io.seata.rm.tcc.api.LocalTCC;
import io.seata.rm.tcc.api.TwoPhaseBusinessAction;
@LocalTCC
public interface AccountTCCService {
@TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
@BusinessActionContextParameter(paramName = "money")int money);
boolean confirm(BusinessActionContext ctx);
boolean cancel(BusinessActionContext ctx);
}
3)编写实现类
在account-service服务中的cn.itcast.account.service.impl
包下新建一个类,实现TCC业务:
package cn.itcast.account.service.impl;
import cn.itcast.account.entity.AccountFreeze;
import cn.itcast.account.mapper.AccountFreezeMapper;
import cn.itcast.account.mapper.AccountMapper;
import cn.itcast.account.service.AccountTCCService;
import io.seata.core.context.RootContext;
import io.seata.rm.tcc.api.BusinessActionContext;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {
@Autowired
private AccountMapper accountMapper;
@Autowired
private AccountFreezeMapper freezeMapper;
@Override
@Transactional
public void deduct(String userId, int money) {
// 0.获取事务id
String xid = RootContext.getXID();
// 1.扣减可用余额
accountMapper.deduct(userId, money);
// 2.记录冻结金额,事务状态
AccountFreeze freeze = new AccountFreeze();
freeze.setUserId(userId);
freeze.setFreezeMoney(money);
freeze.setState(AccountFreeze.State.TRY);
freeze.setXid(xid);
freezeMapper.insert(freeze);
}
@Override
public boolean confirm(BusinessActionContext ctx) {
// 1.获取事务id
String xid = ctx.getXid();
// 2.根据id删除冻结记录
int count = freezeMapper.deleteById(xid);
return count == 1;
}
@Override
public boolean cancel(BusinessActionContext ctx) {
// 0.查询冻结记录
String xid = ctx.getXid();
AccountFreeze freeze = freezeMapper.selectById(xid);
// 1.恢复可用余额
accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
// 2.将冻结金额清零,状态改为CANCEL
freeze.setFreezeMoney(0);
freeze.setState(AccountFreeze.State.CANCEL);
int count = freezeMapper.updateById(freeze);
return count == 1;
}
}
四、SAGA模式
Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。
其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。
Seata官网对于Saga的指南:https://seata.io/zh-cn/docs/user/saga.html
1.原理
在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。
分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。
Saga也分为两个阶段:
- 一阶段:直接提交本地事务
- 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚
2.优缺点
优点:
- 事务参与者可以基于事件驱动实现异步调用,吞吐高
- 一阶段直接提交事务,无锁,性能好
- 不用编写TCC中的三个阶段,实现简单
缺点:
- 软状态持续时间不确定,时效性差
- 没有锁,没有事务隔离,会有脏写
五、四种模式对比
我们从以下几个方面来对比四种实现:
- 一致性:能否保证事务的一致性?强一致还是最终一致?
- 隔离性:事务之间的隔离性如何?
- 代码侵入:是否需要对业务代码改造?
- 性能:有无性能损耗?
- 场景:常见的业务场景